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E D I T O R I A L

On the relevance of Bayesian statistics and MCMC for animal 
models

Quantitative genetics has a historical record of relying on 
Bayesian statistics, especially so in the field of animal breed-
ing since, for example, the seminal work of Sorensen and 
Gianola (2002, Likelihood, Bayesian and MCMC Methods 
in Quantitative Genetics. Springer, New York). One aspect 
of the appeal of Bayesian statistics is that assigning proba-
bilities to values of parameters and hypothesis allows for a 
description of the inference process which is very intuitive in 
the context of scientific research. But beyond the philosoph-
ical distinction between Bayesian and frequentist interpreta-
tion of statistical inference, Bayesian statistics provide some 
practical advantages, as well as different constraints (includ-
ing the need to define prior distributions of parameters and 
the difficulty to completely solve Bayes’ theorem). A first 
advantage is that having inferences in the form of posterior 
distributions greatly improves our ability to interpret uncer-
tainty around estimates and, more importantly, to propagate 
such uncertainty in a series of subsequent analyses. A second, 
unfortunately often overlooked, the advantage is our ability 
to incorporate previous, state‐of‐the‐art knowledge into prior 
distributions to improve our ability to efficiently fit models.

A third, technical advantage comes from the availability 
of general, flexible and robust algorithms: Markov Chain 
Monte Carlo (MCMC). These algorithms are often needed 
in Bayesian statistics, because computing the posterior distri-
bution of the parameters technically requires solving a com-
plex, multivariate integral corresponding to the denominator 
Bayes’ theorem. By sampling directly from the posterior dis-
tribution using ratios of posterior probabilities that are easier 
to compute, MCMC algorithms circumvent this issue. And 
because they are a very general family of algorithms, with 
little to no approximations, they can be applied with a high 
degree of confidence to a very large variety of problems.

Although quantitative genetics has made use of very ef-
ficient frequentist algorithms to optimize restricted max-
imum likelihood (REML) of complex linear mixed models 
(LMMs), like the animal model (such as the average informa-
tion algorithm implemented in ASReml, Gilmour et al. 1995 
Biometrics 51: 1440–1450), such algorithms could also suf-
fer from difficulties to converge and cannot always be used 
to fit generalized linear mixed models (GLMMs). Yet, not 
all traits of interest for quantitative geneticists are nicely and 
normally distributed: some traits, so‐called non‐Gaussian, are 

discrete and/or follow highly skewed distribution. Such traits 
can still be of strong interest and include all kinds of dis-
crete characters, like diseases, survival or fecundity and are 
often best analysed using binomial or Poisson distribution, 
sometimes even with zero‐inflation, over‐/under‐dispersion 
or some kind of truncation. However, historical algorithms 
for fitting GLMMs, such as the penalized quasi‐likelihood 
(PQL, Breslow and Clayton 1993 J. Am. Stat. Assoc. 88: 
9–25) have difficulties in correctly estimating variance 
components (Breslow and Lin 1995 Biometrika 82: 81–91). 
Fortunately, MCMC algorithms being general, they do not 
suffer from such limitations. This, as well as the other ben-
efits of Bayesian statistics mentioned above (O’Hara et al. 
2008 J. Evol. Biol. 21: 949–957), led to MCMC implemen-
tation of ‘generalised animal models’, most famously in the 
R package MCMCglmm (Hadfield 2010). MCMC has been 
shown to outperform other algorithms for the estimation of 
the additive genetic variance of, for example, binary traits (de 
Villemereuil et al. 2013 Methods Ecol. Evol. 4: 260–275).

In a decade, the availability of a free and open source 
package implementing generalized animal models has 
led, at least in the community of evolutionary quantitative 
genetics, to an increase in the number of studies includ-
ing non‐Gaussian traits, even in complex settings. The fact 
that natural selection acts on the actual phenotype, and not 
breeding values on a virtual ‘latent scale’, triggered method-
ological developments to be able to work the actual pheno-
typic scale when using such generalized animal models (de 
Villemereuil et al. 2016 Genetics 204: 1281–1294). Although 
the biological interpretation of such models might not be al-
ways satisfying (de Villemereuil 2018), these models have 
helped quantitative geneticists to analyse traits that were 
difficult to tackle without them. Although skewed traits can 
often be analysed after a normalizing transformation, MCMC 
algorithms can be devised to analyse them directly with a 
skewed error distribution (Varona et al. 2008 Genet. Res. 90: 
179–190.). Furthermore, quantitative traits can be skewed 
not only because of the environmental effects, but because 
of the skewness of the breeding values themselves, for ex-
ample, when facing local adaptation and migration (Débarre 
et al. 2015 Am. Nat. 186: S37–S47), and such skewness can 
greatly impact their response to selection (Bonamour et al. 
2017 Evolution 71: 2703–2713). Although I am not aware 
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of a statistical implementation of animal models account-
ing for such possible skewness in the breeding values, this 
exercise should be relatively straightforward using MCMC 
algorithms. Having a posterior distribution of various pa-
rameters such as the breeding values or variances has also 
been a great help in many situations. A first obvious benefit 
is the ability to compute standard errors and credible inter-
vals for derivated estimates such as heritability, even in the 
complex setting of generalized animal models, and even after 
back‐transformation of such parameters (de Villemereuil 
2018 Ann. N. Y. Acad. Sci. 1422: 29‐47). A second benefit 
is the ability to work with and analyse breeding values while 
accounting for the (often strong!) uncertainty around them 
(Hadfield et al. 2010 J. Stat. Softw. 33: 1–22).

Yet, despite all the advantages they provide, MCMC al-
gorithms are not the norm for animal models. This might be 
partly explained by the general reluctance of the scientific 
community to switch to Bayesian statistics, either because of 
a philosophical rebuttal of it or more genuinely because of 
historical inertia. More likely though, it might be explained 
by the fact that MCMC algorithms are slow algorithms, es-
pecially for complex models leading to auto‐correlation of 
MCMC sample chains, and that they require a bit of user ex-
pertise to check for convergence and large enough effective 
sample size. As an example, despite being a very efficient 
MCMC implementation of the animal model, MCMCglmm 
can become extremely slow when, instead of a pedigree, it is 
provided with a genomic relatedness matrix (GRM, which 
are not sparse matrices). If MCMC algorithms are slow 
when using such GRM matrices, and more generally so in a 
world of ‘big data’, then are they still useful for quantitative 
genetics?

I would believe that we still need Bayesian statistics and 
that good algorithms to fit generalized animal models are 
also still needed. As such, I would expect MCMC to stick 
around for some time still. A possible advance might come 
from the next generation of Bayesian simulation algorithms, 
namely Hamiltonian Monte Carlo (HMC, Hoffman and 
Gelman 2014 J. Mach. Learn. Res. 15: 1593–1623) imple-
mented in the STAN framework. Hamiltonian Monte Carlo 
differs from plain MCMC in that it relies on a determinis-
tic step in the sampling process, which can strongly reduce 
the level of auto‐correlation between successive iterations. 
Running a GRM‐based animal model with STAN (e.g. using 

the brms R package, which offers friendly functions for such 
models, Bürkner 2017 arXiv:1705.11123 [stat.CO]) could be 
achieved in a reasonable amount of time for example, depend-
ing on the size of the dataset. Another possibility is to rely 
on more approximative but fast methods to obtain Bayesian 
posterior distribution, such as Integrated Nested Laplace 
Approximations (INLA, Rue et al. 2009 J. R. Stat. Soc. Ser. B 
Stat. Methodol. 71: 319–392). Specialized packages exists for 
using INLA with pedigrees, such as the animalINLA R pack-
age (Holand et al. 2013 G3 Genes Genomes Genet. 3: 1241–
1251), which, at least for Gaussian traits, has been shown to 
perform quite well compared with MCMC implementations 
such as MCMCglmm (Mathew et al. 2015 Mol Breeding 35: 
99). Unfortunately, those approximative algorithms, like their 
frequentist counterparts can lack generality. As an example, 
for binary traits, the performance of INLA has been shown to 
be subpar, compared with MCMC (Holand et al., ibid.).

Because they are more general than approximation‐based 
algorithms, I thus expect that simulation‐based algorithms 
such as MCMC and HMC will continue to play a strong role 
in helping quantitative geneticists solve difficult problems, 
like the ones posed by generalized animal models, or by the 
skewness of traits (or even of breeding values themselves). 
By definition, however, such simulation‐based algorithms 
will always be slow, as they require complex schemes to sam-
ple directly from the posterior distribution, which I believe 
is the main point preventing them becoming more popular. 
For more classical animal models, the availability of fast 
Bayesian algorithms like INLA could do a lot to popularize 
the use of Bayesian statistics in quantitative genetics.
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